Politecnico di Milano
Department of Aerospace Science and Technology

POLITECNICO
MILANO 1863

STANDARD SELECTION FOR SIMULATOR INTEGRATION

Objectives 2

Integrate available resources into a flight simulation for the following projecits:
¢ Rotorcraft-Pilot Coupling
¢ Manned-Unmanned Teaming
e (G-Seat motion cueing
e Future research, not yet defined

Marek S. kukasiewicz © 2024, CC-BY 4.0 POLITECNICO MILANO 1863

Objectives 3

HOW STANDARDS PROUFERATE:
(<65 A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, £TC)

M?! RIDICULOUS! SooN:
WE NEED To DEVELOP
SITUATION: || SEUVERSAL SISO || g7 aTON:
THERE ARE USE CASES. yepn THERE ARE
M CorPETNG || || 15 corENG
STANDPRDS. STANDPRDS.

)

Figure: ‘Standards’ webcomic, reproduced from xkcd.com, CC-BY-NC 2.5

Marek S. Lukasiewicz © 2024, CC-BY 4.0 POLITECNICO MILANO 1863

https://xkcd.com/927/

Proposed options 4

Summary of selected options from the previous presentation

Solution Relc.av.e}nt Ease of use Softwar(.a Widgr -
Definitions Constraints | Applicability

Current bad neutral good very bad
HLA very good | neutral bad neutral

DIS bad neutral good neutral
DDS neutral good neutral good
MAVLink good good good good
Mixed approach | neutral neutral good neutral

Other solutions characterised, but omitted from presentation:

FMI (Functional Mock-up Interface), DCP (Distributed Co-Simulation Protocol), ZeroMQ,
MessagePack, Capnproto/Protobuf, Web (JSON+HTTP+WS), MQTT (Message Queue
Telemetry Transport), ACMI Tacview

Marek S. Lukasiewicz © 2024, CC-BY 4.0

POLITECNICO MILANO 1863

Proposed options 5

On the basis of online documentation
for each considered option, MAVLink
protocol was chosen as the most
promising option.

On that assumption, more detailed
architecture proposal was made (shown
on right), and sent out with request for
comments to colleagues from
academia, working in UAV or manned
simulation, and publicly in ArduPilot
forum (UAV software, one of main
MAVLink dependents).

Marek S. Lukasiewicz © 2024, CC-BY 4.0

Simulator architecture comparison

A proposal for reworking research flight simulators Rotorcraft-Pilot Coupling and Frame-SIM
Marek S. Eukasiewicz (marek lukasiewicz@polimi.it), 2024-01-29

Department of Aerospace Science and Technology (DAER) of Politecnico di Milano

© 2024. This work is openly licensed via CC-8Y 4.0

Current setup

FlightGear | [sighsear Fupd Core
1T visualisation vardew o

Analog volage
Raspberry Pi '—

Diagram legend

present system component
ot yet developed component
Interface used by operator

i Read more about MAVLINK in its
Proposed MAVLink rework Which includes a large set of cor

1 propose to publish our
actually used, with any e

FlighiGear |
wisualisation

‘Simulation
manager
application

(expected
with C++ Gt)

single common log file as
binary MAVLink //D/OF text CSV

POLITECNICO MILANO 1863

Feedback 6

Question asked on 2024-02-01 in public ArduPilot Discord, channel #research, quoted verbatim:

I'm seriously considering (ab)using MAVLink to serve as the backbone of a crewed air-
craft simulator. For research and teaching purposes, we're building it as loosely coupled
modules e.g. the dynamic model takes controls and weather info, and publishes new
aircraft attitude.

Even if | ignore all benefits for drone-helicopter collaboration, it seems to check all the
boxes:

* free, open source
e already has well-documented definitions for all the aeronautical data | need
» also microservices like heartbeat, params, command ack
» | can easily extend it if | miss something specific like eye tracking
e could be useful for graduating students, instead of them figuring out my custom

in-house developed mess
e doesn’t force me to rewrite the whole software execution model, just share data

I'd really appreciate your feedback, I'm afraid that this seems such a silver bullet only
because | have been using MAVLink for too long

Marek S. Lukasiewicz © 2024, CC-BY 4.0 POLITECNICO MILANO 1863

Feedback 7

Received 9 replies overall to the open question. None were negative, four were
decidedly positive.

Specific advantages pointed out:

¢ Using an estabilished solution is really important to not depend on the
author to on-board every user (3 responses). Also online search and
chatbots will work much better

e Defining requirements through user stories was done well (2 responses)
e Widely used in the UAV environment, with the largest documentation

» Connecting all application elements with one standard is a valuable goal
e Very easy to integrate in a MUM-T scenario

e Can be sent over any transport medium, also has provisions for tunneling
other packets through

Marek S. Lukasiewicz © 2024, CC-BY 4.0 POLITECNICO MILANO 1863

Feedback Disadvantages

Specific disadvantages pointed out by respondents, with rebuttal below:

* Payload is limited to only 256 bytes (2 responses). Simple fields not suited
for arbitrarily complex data structures (eg. animation state of an airplane).
A JSON-like communication was already tested with lidia. In practice there
was push for constant, well defined and described messages in the team.
Efficient encoding makes it a viable format for direct logging to binary file.

e Has some other features for lossy links that aren’t needed in the context of
local network, incl. sequencing packets and CRC.
To have simpler, stateless connections with less latency, UDP will be used
which is lossy. CRC is handled by libraries, not adding any work for user.

e Using ZeroMQ or MQTT would provide publish and subscribe control and
other conveniences, once the admittedly complex setup is done.
MAVLink defines node discovery and requesting data stream. Will use
software tools developed by autopilot authors for debugging.

e Some devices would not be covered by the standardized messages.
Same person later added that custom protocol would copy ca. 80% anyway

Marek S. Lukasiewicz © 2024, CC-BY 4.0 POLITECNICO MILANO 1863

Practical comparison 9

Another round of comparison was made, adding
alternatives suggested by respondents:

e MQTT

e Data Distribution Service
e ZeroMQ

* MAVLink

An attempt was made at creating a minimal
demo for each, integrating them with the
following tools used in the simulator facility:
e Python
e MATLAB Simulink

Notably, C and C++ were omitted. Each of these
solutions is already implemented in either of
these languages, so easy integration is
expected.

Marek S. Lukasiewicz © 2024, CC-BY 4.0 POLITECNICO MILANO 1863

Practical comparison MQTT

o MQTT features a centralised architecture where messages are routed by a
single broker instance, well suited for single simulation manager

e Example in the repository uses Mosquitto broker, with paho-mqtt for Python
subscriber, and ‘Industrial Communication Toolbox’ for MATLAB subscriber

¢ Found out that ‘Industrial Communication Toolbox’ doesn’t include any
Simulink blocks, corroborated by existence of a commercial package
specifically for that use case

MQTT Client MQTT Broker MQTT Client
_ Publish: 24° C CUbecriber:
Publisher: Temperature Sensor > oubscriper:
Mobile device

@

o topic: tempe
:,-: Publish to topic: temperature
Publish: 24°C
Publish: 24° C
> MQTT Client
o topic: tempe € Subscriber:

Backend system

Figure: MQTT architecture, reproduced from maqtt.org © 2022 MQTT.org

Marek S. kukasiewicz © 2024, CC-BY 4.0 POLITECNICO MILANO 1863

https://mqtt.org

Practical comparison DDS 11

» DDS also offers publish/subscribe pattern, but doesn’t have a central broker,
and topic contens are described with XML files

* Example in the repository uses cyclonedds for Python writer and subscriber,
and ‘DDS Blockset’ for MATLAB subscriber

e Found out that ‘DDS Blockset’ is dependent on commercial ‘RTI Connext’
software, and only includes a short term license. Also requires Simulink
model to be run in Real-Time, which turned out too difficult to configure.

s

e

. TopicA DDS DOMAIN

Qs
Phase

Qos.

Fi h
. TopicC

Figure: DDS infographic, reproduced from dds-foundation.org. © 2024 OMG, Inc.

Marek S. Lukasiewicz © 2024, CC-BY 4.0 POLITECNICO MILANO 1863

https://www.dds-foundation.org/what-is-dds-3/

Practical comparison ZeroMQ 12

» ZeroMQ also offers publish/subscribe pattern without central broker, is much
more open and has multiple services standardised on top of this transport

¢ Python usage with pyzmq package was recently tested in another project

e Example for MATLAB was run following a blog post on MATLAB Central by
MathWorks staff, which involves local build of C and C++ libraries for
ZeroMQ and loading them as Simulink extensions
Running the provided project required C++ compiler setup, installing external

dependencies, checking out past versions of Git repositories, debugging dynamic library
loading, while having virtually no information from Simulink error messages

1‘ Simulink Project - SimulinkCoSimulationExample

SIMULINK PROJECT PROJECT SHORTCUTS

@ ﬂ1—gi_clnne_zmq
2 buid_zmq
| 3 _ SetEnvVariable

2 - CO-SIMULATION EXAMPLES 3 - COMMUNICATION EXAMPLES]

LS
H@)e |- mAeve +|

D me Status

Figure: Simulink project steps, reproduced from Communicating with an External Application for
Co-Simulation blog post mentioned above. © 2018 The MathWorks, Inc.

Marek S. Lukasiewicz © 2024, CC-BY 4.0 POLITECNICO MILANO 1863

https://github.com/Maarrk/pupil-client/
https://blogs.mathworks.com/simulink/2018/05/01/communicating-with-an-external-application-for-co-simulation/
https://blogs.mathworks.com/simulink/2018/05/01/communicating-with-an-external-application-for-co-simulation/
https://blogs.mathworks.com/simulink/2018/05/01/communicating-with-an-external-application-for-co-simulation/
https://blogs.mathworks.com/simulink/2018/05/01/communicating-with-an-external-application-for-co-simulation/

Practical comparison MAVLink

* Only specifies message contents, doesn’t involve any specific transport

e Example in the repository uses pymavlink for Python server and node, ‘UAV
Toolbox’ and ‘Instrument Control Toolbox’ for MATLAB node. Both include
standard messages, and allow loading custom XML definitions.

e Broadcasting without a central node was successfully done in Python using
IP Multicast, but in Simulink required the difficult ‘Real-Time’ setup

* A classical client-server architecture was quickly and easily implemented

» Client sends HEARTBEAT from any ephemeral UDP port to a well-known port
on the server, which then replies on the same socket. All under 100 lines of Python
» Port 24400 was chosen arbitrarily, no other services using it were found [1, 2, 3, 4]

MAVLink v2 Frame(12 - 280)

ey | Nc | cmp [| sys |comp MSG ID 'PAYLOAD CHECKSUM SIGNATURE
FLAGS|FLAGS D D (3 bytes) (0 - 255 bytes) (2 bytes) (13 bytes)

»
>

Figure: MAVLink packet format from Developer Guide, CC-BY 4.0

Marek S. Lukasiewicz © 2024, CC-BY 4.0 POLITECNICO MILANO 1863

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers#Registered_ports
https://www.speedguide.net/ports.php?filter=24400
https://tcp-udp-ports.com/ports24000-25000.htm
https://www.adminsub.net/tcp-udp-port-finder/24400
https://mavlink.io/en/guide/serialization.html

Example walkthrough

Check if there is already a relevant convention for a feature
in Microservices section of Dev Guide

» If nothing was found, search the Common Message Set
Read documentation for the service: Heartbeat/Connection Protocol
Read documentation for specific messages: HEARTBEAT

mplementations

Type to search

Introduction e

Getting Started
Using MAVLINK Libraries Heartbeat/Connection Protocol
Guide

The heartbeat protocol is used to advertise the existence of a system on the MAVLink network, along
with its system and component id, vehicle type, flight stack, component type, and flight mode.

Messages (common)

Microservices
The heartbeat allows other compenents to:
Heartbeat/Connection Protocol

« discover systems that are connected to the network and infer when they have disconnected. A
Mission Protocol

component is considered to be connected to the network if its HEARTBEAT message is regularly
Parameter Protocol received, and disconnected if a number of expected messages are not received.
Extended Parameter Protocol « handle other messages from the component appropriately, based on component type and other

Command Protocol properties (e.g. layout a GCS interface based on vehicle type).

« route messages to systems on different interfaces.
Manual Control (Joystick) Protocol

Camera Protocol

Message/Enum Summary

Gimbal Protocol v2

Arm Authorization Protocol -
Message Description

Imace Transmission Protocel

POLITECNICO MIL

https://mavlink.io/en/services/
https://mavlink.io/en/messages/common.html
https://mavlink.io/en/services/heartbeat.html
https://mavlink.io/en/messages/common.html#HEARTBEAT

Example walkthrough

HEARTBEAT (#0)

[Message] The heartbeat message shows that a system or component is present and responding. The type and autopilot fields (along with the message component id), allow the receiving system to treat
further messages from this system appropriately (e.g. by laying out the user interface based on the autopilot). This microservice is documented at hitps://mavlink.io/en/services/heartbeat.htm|

Field Name Type Values Description

type uint8_t MAV_TYPE Vehicle or component type. For a flight controller component the vehicle type (quadrotor, helicopter, etc.). For other components
the component type (e.g. camera, gimbal, etc.). This should be used in preference to component id for identifying the component
type.

autopilot uint8_t MAV_AUTOPILOT Autopilot type / class. Use MAV_AUTOPILOT_INVALID for components that are not flight controllers.

base_mode uint8_t MAV_MODE_FLAG = System mode bitmap.

custom_mode uint32_t A bitfield for use for autopilot-specific flags

system_status uint8_t MAV_STATE System status flag.

mavlink_version uint8_t_mavlink_version MAVLink version, not writable by user, gets added by protocol because of magic data type: uint8_t_mavlink_version

=0

pd :
HEARTBEAT
:= Payload.type
localhost
MAV_TYPE_HELICOPTER Dataf—#Data " 400
:= Payload.autopilot Bus [—#{ Msg
MAVLink
MAV_AUTOPILOT_INVALID Length >
HEARTBEAT
:= Payload.base_mode

MAV_MODE_FLAG_MANUAL_INPUT_ENABLED

:= Payload.system_status

MAV_STATE_ACTIVE

Implementing the HEARTBEAT message. Top: MAVLink Dev Guide, bottom: Simulink blocks

Marek S. kukasiewicz © 2024, CC-BY POLITECNICO MILANO 1863

Example walkthrough

MANUAL_CONTROL (#69)

[Message] This message provides an AP| for manually controlling the vehicle using standard joystick axes nomenclature, along with a joystick-like input device. Unused axes can be disabled and buttons
states are transmitted as individual on/off bits of a bitmask

Field Name Type Description
target uintg_t The system to be controlled.
X int16_t X-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to forward(1000)-backward(-1000)

movement on a joystick and the pitch of a vehicle.

¥y int16_t Y-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to left(-1000)-right(1000) movement on
a joystick and the roll of a vehicle.

z int16_t Z-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to a separate slider movement with
maximum being 1000 and minimum being -1000 on a joystick and the thrust of a vehicle. Positive values are positive thrust, negative values are negative thrust.

r int16_t R-axis, normalized to the range [-1000,1000]. A value of INT16_MAX indicates that this axis is invalid. Generally corresponds to a twisting of the joystick, with
counter-clockwise being 1000 and clockwise being -1000, and the yaw of a vehicle.

buttons uinti6_t A bitfield corresponding to the joystick buttons' 0-15 current state, 1 for pressed, 0 for released. The lowest bit correspends to Button 1.

Data Data IsNew
0.0.0.0 N
Port: 58804 levieiel ¢
=
—_— N
Length Msg

MANUAL_CONTROL
Max length

throttle

Qutput

MANUAL_CONTROL message. Top: MAVLink Dev Guide, bottom: Simulink blocks

Marek S. kukasiewicz © 2024, CC-BY POLITECNICO MILANO 1863

Video demonstration

Play the screen recording of running the Simulink model here.

If file missing: unlisted video on personal YouTube channel

Marek S. kukasiewicz © 2024, CC-BY 4.0 POLITECNICO MILANO 1863

https://youtu.be/orUOWOUHCCM

Project name

e T =2 MARSH Sim — Modular Architecture
- — for Reconfigurable Simulation of Helicopters

¢ A real marsh is an ecosystem where diverse plants grow together,
connected by shallow water
¢ A pun on ‘marshalling’, quoting Wikipedia:
process of transforming the memory representation of an object
into a data format suitable for storage or transmission

Similar to MAV_ prefix used in identifiers defined by MAVLink
Didn’t find any name clashes through online search engines
Short and simple spelling with no diacritics

Marek S. Lukasiewicz © 2024, CC-BY 4.0 POLITECNICO MILANO 1863

https://en.wikipedia.org/wiki/Marshalling_(computer_science)

Conclusion

¢ Detailed proposal for connecting simulator modules was
prepared using estabilished software design methodology

¢ In order to minimize personal bias, consulted literature,
online documentation and domain professionals

* Multiple options were tested in practice, specifically for the use
case and tools used in the research group

e All stages of analysis have identified a dialect of MAVLink
as the preferable solution for the simulator facility

Marek S. Lukasiewicz © 2024, CC-BY 4.0 POLITECNICO MILANO 1863

	Objectives
	Proposed options
	Feedback
	Disadvantages

	Practical comparison
	MQTT
	DDS
	ZeroMQ
	MAVLink

	Example walkthrough
	Video demonstration
	Project name
	Conclusion

