
Politecnico di Milano
Department of Aerospace Science and Technology

STANDARD SELECTION FOR SIMULATOR INTEGRATION
Marek S. Łukasiewicz



Integrate available resources into a flight simulation for the following projects:
• Rotorcraft-Pilot Coupling
• Manned-Unmanned Teaming
• G-Seat motion cueing
• Future research, not yet defined

Objectives 2

Marek S. Łukasiewicz © 2024, CC-BY 4.0



Figure: ‘Standards’ webcomic, reproduced from xkcd.com, CC-BY-NC 2.5

Objectives 3

Marek S. Łukasiewicz © 2024, CC-BY 4.0

https://xkcd.com/927/


Summary of selected options from the previous presentation

Solution Relevant
Definitions Ease of use Software

Constraints
Wider
Applicability

Current bad neutral good very bad
HLA very good neutral bad neutral
DIS bad neutral good neutral
DDS neutral good neutral good
MAVLink good good good good
Mixed approach neutral neutral good neutral

Other solutions characterised, but omitted from presentation:

FMI (Functional Mock-up Interface), DCP (Distributed Co-Simulation Protocol), ZeroMQ,
MessagePack, Capnproto/Protobuf, Web (JSON+HTTP+WS), MQTT (Message Queue
Telemetry Transport), ACMI Tacview

Proposed options 4

Marek S. Łukasiewicz © 2024, CC-BY 4.0



On the basis of online documentation
for each considered option, MAVLink
protocol was chosen as the most
promising option.

On that assumption, more detailed
architecture proposal was made (shown
on right), and sent out with request for
comments to colleagues from
academia, working in UAV or manned
simulation, and publicly in ArduPilot
forum (UAV software, one of main
MAVLink dependents).

Proposed options 5

Marek S. Łukasiewicz © 2024, CC-BY 4.0



Question asked on 2024-02-01 in public ArduPilot Discord, channel #research, quoted verbatim:

I’m seriously considering (ab)using MAVLink to serve as the backbone of a crewed air-
craft simulator. For research and teaching purposes, we’re building it as loosely coupled
modules e.g. the dynamic model takes controls and weather info, and publishes new
aircraft attitude.
Even if I ignore all benefits for drone-helicopter collaboration, it seems to check all the
boxes:

• free, open source
• already has well-documented definitions for all the aeronautical data I need

▶ also microservices like heartbeat, params, command ack
▶ I can easily extend it if I miss something specific like eye tracking

• could be useful for graduating students, instead of them figuring out my custom
in-house developed mess

• doesn’t force me to rewrite the whole software execution model, just share data
I’d really appreciate your feedback, I’m afraid that this seems such a silver bullet only
because I have been using MAVLink for too long

Feedback 6

Marek S. Łukasiewicz © 2024, CC-BY 4.0



Received 9 replies overall to the open question. None were negative, four were
decidedly positive.

Specific advantages pointed out:
• Using an estabilished solution is really important to not depend on the

author to on-board every user (3 responses). Also online search and
chatbots will work much better

• Defining requirements through user stories was done well (2 responses)
• Widely used in the UAV environment, with the largest documentation
• Connecting all application elements with one standard is a valuable goal
• Very easy to integrate in a MUM-T scenario
• Can be sent over any transport medium, also has provisions for tunneling

other packets through

Feedback 7

Marek S. Łukasiewicz © 2024, CC-BY 4.0



Specific disadvantages pointed out by respondents, with rebuttal below:

• Payload is limited to only 256 bytes (2 responses). Simple fields not suited
for arbitrarily complex data structures (eg. animation state of an airplane).
A JSON-like communication was already tested with lidia. In practice there
was push for constant, well defined and described messages in the team.
Efficient encoding makes it a viable format for direct logging to binary file.

• Has some other features for lossy links that aren’t needed in the context of
local network, incl. sequencing packets and CRC.
To have simpler, stateless connections with less latency, UDP will be used
which is lossy. CRC is handled by libraries, not adding any work for user.

• Using ZeroMQ or MQTT would provide publish and subscribe control and
other conveniences, once the admittedly complex setup is done.
MAVLink defines node discovery and requesting data stream. Will use
software tools developed by autopilot authors for debugging.

• Some devices would not be covered by the standardized messages.
Same person later added that custom protocol would copy ca. 80% anyway

Feedback Disadvantages 8

Marek S. Łukasiewicz © 2024, CC-BY 4.0



Another round of comparison was made, adding
alternatives suggested by respondents:
• MQTT
• Data Distribution Service
• ZeroMQ
• MAVLink

An attempt was made at creating a minimal
demo for each, integrating them with the
following tools used in the simulator facility:
• Python
• MATLAB Simulink

Notably, C and C++ were omitted. Each of these
solutions is already implemented in either of
these languages, so easy integration is
expected.

Practical comparison 9

Marek S. Łukasiewicz © 2024, CC-BY 4.0



• MQTT features a centralised architecture where messages are routed by a
single broker instance, well suited for single simulation manager

• Example in the repository uses Mosquitto broker, with paho-mqtt for Python
subscriber, and ‘Industrial Communication Toolbox’ for MATLAB subscriber

• Found out that ‘Industrial Communication Toolbox’ doesn’t include any
Simulink blocks, corroborated by existence of a commercial package
specifically for that use case

Figure: MQTT architecture, reproduced from mqtt.org © 2022 MQTT.org

Practical comparison MQTT 10

Marek S. Łukasiewicz © 2024, CC-BY 4.0

https://mqtt.org


g
• DDS also offers publish/subscribe pattern, but doesn’t have a central broker,

and topic contens are described with XML files

• Example in the repository uses cyclonedds for Python writer and subscriber,
and ‘DDS Blockset’ for MATLAB subscriber

• Found out that ‘DDS Blockset’ is dependent on commercial ‘RTI Connext’
software, and only includes a short term license. Also requires Simulink
model to be run in Real-Time, which turned out too difficult to configure.

Figure: DDS infographic, reproduced from dds-foundation.org. © 2024 OMG, Inc.

Practical comparison DDS 11

Marek S. Łukasiewicz © 2024, CC-BY 4.0

https://www.dds-foundation.org/what-is-dds-3/


• ZeroMQ also offers publish/subscribe pattern without central broker, is much
more open and has multiple services standardised on top of this transport

• Python usage with pyzmq package was recently tested in another project

• Example for MATLAB was run following a blog post on MATLAB Central by
MathWorks staff, which involves local build of C and C++ libraries for
ZeroMQ and loading them as Simulink extensions
Running the provided project required C++ compiler setup, installing external
dependencies, checking out past versions of Git repositories, debugging dynamic library
loading, while having virtually no information from Simulink error messages

Figure: Simulink project steps, reproduced from Communicating with an External Application for
Co-Simulation blog post mentioned above. © 2018 The MathWorks, Inc.

Practical comparison ZeroMQ 12

Marek S. Łukasiewicz © 2024, CC-BY 4.0

https://github.com/Maarrk/pupil-client/
https://blogs.mathworks.com/simulink/2018/05/01/communicating-with-an-external-application-for-co-simulation/
https://blogs.mathworks.com/simulink/2018/05/01/communicating-with-an-external-application-for-co-simulation/
https://blogs.mathworks.com/simulink/2018/05/01/communicating-with-an-external-application-for-co-simulation/
https://blogs.mathworks.com/simulink/2018/05/01/communicating-with-an-external-application-for-co-simulation/


• Only specifies message contents, doesn’t involve any specific transport

• Example in the repository uses pymavlink for Python server and node, ‘UAV
Toolbox’ and ‘Instrument Control Toolbox’ for MATLAB node. Both include
standard messages, and allow loading custom XML definitions.

• Broadcasting without a central node was successfully done in Python using
IP Multicast, but in Simulink required the difficult ‘Real-Time’ setup

• A classical client-server architecture was quickly and easily implemented
▶ Client sends HEARTBEAT from any ephemeral UDP port to a well-known port

on the server, which then replies on the same socket. All under 100 lines of Python
▶ Port 24400 was chosen arbitrarily, no other services using it were found [1, 2, 3, 4]

Figure: MAVLink packet format from Developer Guide, CC-BY 4.0

Practical comparison MAVLink 13

Marek S. Łukasiewicz © 2024, CC-BY 4.0

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers#Registered_ports
https://www.speedguide.net/ports.php?filter=24400
https://tcp-udp-ports.com/ports24000-25000.htm
https://www.adminsub.net/tcp-udp-port-finder/24400
https://mavlink.io/en/guide/serialization.html


1 Check if there is already a relevant convention for a feature
in Microservices section of Dev Guide
▶ If nothing was found, search the Common Message Set

2 Read documentation for the service: Heartbeat/Connection Protocol
3 Read documentation for specific messages: HEARTBEAT

Example walkthrough 14

Marek S. Łukasiewicz © 2024, CC-BY 4.0

https://mavlink.io/en/services/
https://mavlink.io/en/messages/common.html
https://mavlink.io/en/services/heartbeat.html
https://mavlink.io/en/messages/common.html#HEARTBEAT


Implementing the HEARTBEAT message. Top: MAVLink Dev Guide, bottom: Simulink blocks

Example walkthrough 15

Marek S. Łukasiewicz © 2024, CC-BY 4.0



MANUAL_CONTROL message. Top: MAVLink Dev Guide, bottom: Simulink blocks

Example walkthrough 16

Marek S. Łukasiewicz © 2024, CC-BY 4.0



Play the screen recording of running the Simulink model here.

If file missing: unlisted video on personal YouTube channel

Video demonstration 17

Marek S. Łukasiewicz © 2024, CC-BY 4.0

https://youtu.be/orUOWOUHCCM


MARSH Sim — Modular Architecture
for Reconfigurable Simulation of Helicopters

• A real marsh is an ecosystem where diverse plants grow together,
connected by shallow water

• A pun on ‘marshalling’, quoting Wikipedia:
process of transforming the memory representation of an object
into a data format suitable for storage or transmission

• Similar to MAV_ prefix used in identifiers defined by MAVLink
• Didn’t find any name clashes through online search engines
• Short and simple spelling with no diacritics

Project name 18

Marek S. Łukasiewicz © 2024, CC-BY 4.0

https://en.wikipedia.org/wiki/Marshalling_(computer_science)


• Detailed proposal for connecting simulator modules was
prepared using estabilished software design methodology

• In order to minimize personal bias, consulted literature,
online documentation and domain professionals

• Multiple options were tested in practice, specifically for the use
case and tools used in the research group

• All stages of analysis have identified a dialect of MAVLink
as the preferable solution for the simulator facility

Conclusion 19

Marek S. Łukasiewicz © 2024, CC-BY 4.0


	Objectives
	Proposed options
	Feedback
	Disadvantages

	Practical comparison
	MQTT
	DDS
	ZeroMQ
	MAVLink

	Example walkthrough
	Video demonstration
	Project name
	Conclusion

